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We encompass the Morcau-Yosida regularization process by infimal convolution
into a general framework. This sheds light on the assumptions required for
obtaining the usual properties. In particular the class of fower-T2 mappings is
shown to be a suitable class for performing the usual proxima! regularization in
open subsets of Hilbert spaces. The role of growth conditions is pointed out.
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The present work can be scen as an introduction to [21] and a supple-
ment to it. Here we focus our attention on a generalization of the
Moreau-Yosida regularization process of a real-valued function f in 2
metric space (X, d) given by

fex)y= inf [f(w)+ 367 dw, x)*] (13

for xe X, ¢>0. It is obtained by replacing the quadratic term 3d(s», x)"
above by K(w, x) where K: X* > R, is a continuous mapping null on the
diagonal called a (regularization) kerncl. Under some conditions, the
regularity properties of K can be transferred to the approximations f,. This
idea occurred to several authors as far ago as R. Baire (see [4, 6,9, 14, 227
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for instance). Here we try to give a systematic treatment of this idea, going
a step further than in [21] for what concerns differentiability of the
approximations. Nevertheless we do not try to use the most general
framework which would be Banach manifolds, as we are not convinced
that (for the time being) the potential applications would justify the
amount of work required for dealing with the geometrical problems. Still
we hope that our study will make clearer what conditions are required for
regularization, in particular in the case of an open subset X of a reflexive
Banach spacc when some kind of local convexity can be invoked on f.
Here, as in [21] we stress the favorable class of lower-C? mappings (or its
extension to infinite dimensional Hilbert spaces [20,24]). Some results
were obtained in [21] when fis allowed to take the value +oc. Here we
reject this extension, realizing that it leads to non-trivial problems. For
instance, when f is the indicator function of some subset 4 of X (i.c., f is
zero on A and +oc elsewhere) then f, is nothing but je~'d% where
d,=d(-, A) is the distance to A; thus one is led to problems such as the
existence of proximal points and the like (see [12, 19] and their references).
For a study in the important case of a subset 4 defined by equalities and
inequalities as in mathematical programming see [3].

After a short comparison of the merits of the approximation process by
infimal convolution with those of the approximation by mollifiers in
Section 1, we reveal the utmost importance of growth conditions and
describe the clementary properties of the infimal convolution approxima-
tion (Section 2). Section 3 is devoted to differentiability properties of the
approximations; it contains a study of the limit behavior of the derivatives
(f.).»0 as € >0, which secems to be new, at least in the nonconvex case.
We conclude with an extension of the classical use of regularization in
cpiconvergence (see [1, 2, 8, 13]).

Throughout, the open ball with center x and radius r in a metric space
is denoted by B(x, r) and the set of positive real numbers is denoted by P,
while R, =PuU {0}, R=Ru{+0}, R=R U {—o0}. For a subset 4 of
a metric space (E, d) and xe E we set d(x, A)=inf{d(x, a):ac A}.

1. REGULARIZATION VIA CONVOLUTION VERSUS
REGULARIZATION VIA INFIMAL CONVOLUTION

The most usual way of regularizing a locally integrable function f on
some open subset X of an euclidean space E of dimension d consists of
taking a mollifier M on E (i.e., a C* function with compact support such
that [z M(x)dx=1) and in setting

R.f(x)=¢ dJ'X Mz~ (x — 0)) f(v) do. (2)
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This regularization process is no more valid in infinite dimensional spaces
{(unless some more sophisticated tools such as Wiener measures are used ).
On the other hand R, f'is easily seen to be of class C” and can be defined
even when f takes its values in a Banach space.

These propertics do not carry over to the regularization process (1} by
infimal convolution. On the other hand it can be used when E is an infinite
dimensional Hilbert space (and in even more general situations, as shown
below), provided f satisfies a mild growth condition. When X and f are
convex f, 1s convex over E (for R, [ this is true only on a subset X, of X
strongly contained in X in a sense made precise below). Moreover one has
the following properties.

1.1. ProposITION.  Let f: X —> R and for ceP fet f be defined by (1
Then

inf £, =inf /.

Moreover any minimizer for f is a minimizer for f,, and if f is lower semi-
continuous (1.s.c.) any minimizer for f. is a minimizer for f.

These assertions carry over to the more general process considered in the
next section. Morcover one can show that critical points, when properly
defined, are preserved [21].

Proof. The first assertion is a consequence of the equality

WX

infinf (f(w) + 1e 'dw, x)?)=infinf (f(w)+1e 'd(w, x)*) = inf f(w).

If xeX is such that f(x)<f(w) for each weX then obviously
Jx)=f(x)<inf, ., f.(w) and x is a minimizer of f,. Finally let x be 4
minimizer of £, and let (w,) be a sequence such that

Fov) 4w, XY <filx)+

x| -

Then we have
1 2o f b, ]
£ dw,, x)’ <fx)+-——inff=-
n n
so that (w,} — x. Therefore, if fis L.s.c. at x we get

f(x)<lim

inf f(w,) < lim inf ( )+ %) =inf/ 1|

]
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In the following proposition for a subsct 4 of X and xe P we set

A,={xeE:d(x, Ay<a}

while for a mapping h: W — R and re R we denote the strict r-level sct of
h by

Sth,r)y={weX:h(w)<r}.

1.2. PROPOSITION. For each [ X - R and each ¢ P the strict level sets
of fand f,: E - R are related via the formula

S(fer)= Stfir—1) 2.

>0

The proof of this assertion is easy. Let us note that it might prove to be
useful for giving a proof of Theorem 4.1 or Corollary 4.2 below in the spirit
of [27] or for duality results in the spirit of [26].

As a further motivation for considering more gencral regularizing terms
than the quadratic term 1d(w, x)* in (1) let us note that the regularization
given by

filx)=inl (f(w)+4 ‘d(w, x)), (3)

we X

for xeX, AieP, has been used in [6, 14] for extending lipschitzian
functions and approaching lower semicontinuous (ls.c.) functions by
lipschitzian ones; here we use it to rephrase a famous result.

1.3. ProposiTION (Ekeland’s Variational Principle [10]). Let (X, d) be
a complete metric space and let - X » R be a Ls.c. function bounded from
below. Let m=inff. Then for any positive numbers a, 1 and any
a-approximate minimizer x, of f (ie., xo€ f~'(1—oc, m+a])) there exists
x € B(x,, 24) with f,(x)= f(X).

2. THE PROMINENT ROLE OF GROWTH CONDITIONS

Whereas the regularization process by mollifiers applies to any con-
tinuous function on a finite dimensional space, the use of the
Moreau-Yosida approximation scheme is limited to functions satisfying a
growth condition. This fact already noted in [1, 4, 21] becomes still more
important when one dcals with a function f defined on an open subset X
of a Hilbert space E. The extension of f by +oc on E\NX is ls.c. only if
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f(x)—> +x as x> %, xe X for each Xxecl{X)\X. A way of circumventing
this difficulty consists in replacing the usual quadratic term § [w — x|* in (1)
be a more general term K(w, x) so that

fix)= infY [fOw) + 7 K (w, x)]

for xe X, ee P=10, +oc[. Thus, even if f(») does not converges to +oc
as w converges 1o a boundary point, onc may ensure that the infimum is
attained by requiring that K(w, x)— +2c as w converges to a boundary
point of X, along with some compactness assumption or growth condition.

Given a (regularization) kernel K on a topological space X, ic., a con-
tinuous function K: Xx X - R, such that K(x, x)=0 for each xe X, one
defines the coefficient of K-minorization (or K-decrease) of /- X — R as the
infimum d(f) (or d(f) if no confusion can arise) of the set of ce R, such
that f+ cK(-, x) is bounded below for each xe X. If K is coherent in the
sense that for any x, y in X and each p>1 therc exists re R with

K(w, x)< pK(w, y)+r forcach welX,
then
de(f)=inf{ceR, :Axoe XIbeR:f=b—cK(-. xo)}.

When X is a subset of a topological vector space (t.v.s.}) E a general way
of obtaining a kernel consists in sctting

K(w, x)=k(w —x),

where k: E - R, is continuous such that £(0)=0. When X is a subset of
a metric space one can use an arbitrary continuous mapping i R_ - R .
with #(0) =0 for setting

K(w, x)=h(d(w, x)).

In particular, for « e P the kernel associated in this way to h,:r — (1/2) r*
is denoted by K,. When a =2 (the usual case) and dy(f)< +a [ is said
to be quadratically minorized.

When X is an open subset of a metric space (E, d), it may be advan-
tageous to take into account the geometry of X by modifying the distance
function on X. For instance one can set

dy(x, yy=d(x, y)+ |d(x, X)) ' —d(y, X)),

where X= E\X is supposed to be nonempty; when E is complete X is
complete for dy and dy induces the usual topology on X. Moreover func-
tions f on X which are not coercive on X (where f is said to be coercive
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if f(x,)—> +o as (x,) converges to some boundary point of X or
(d(x,, x4)) = +0oc) can be taken into account. We may even allow f(x) to
converge to —oc as x converges to some boundary point of X as in the
example E=R, X=P, f'=/n.

Another way of defining a new distance on X which can be used in a
kernel consists in taking the geodesic distance on X associated to a suitable
Finsler (or Riemannian structure) [16, 17, 217,

fz(x,y)=inf{J’01 g(c(t)) le(0)] di:ce C'([0, 17, X), ¢(0) =x, (1) = y},

where g: X - P is a continuous function such as d(x, X°)~! for instance.

Another example of interest is the case of a kernel on a n.v.s. E given by
K(w, x)=13 {A(w—x), w—x) where A: E > E' is a positive linear operator
from E into its topological dual space E’. For such a kernel the firmness
condition introduced below is not satisfied unless A4 is definite positive (for
some xeP one has {(Ax, x) >« |x|? for each xe E). However, when A
is strictly positive ({(A4x, x>>0 for xe E\{0}) the norm ||, given by
[x] 4= ({Ax, x>)"* may be used instead of the norm of E, along with some
alterations of what follows.

Finally, let us note that when E is some L ,-space, p > 1, a kernel of the
form K(w, x)=(1/p) |w — x|” secms to fit more to the structure of the space
than the usual quadratic kernel. A similar remark is valid for Orlicz spaces.

In this respect let us note (sce also [13]) the following fact which is a
direct consequence of [23, Theorem 3.A] to which we refer for the notions
used below. Let (S, &, o) be a o-finite measured space and let f: Sx E-> R’
be a normal integrand, where E is some separable Banach space. Let
k: E— R, be a convex continuous function with £(0)=0 and let K be the
associated kernel on E given by K(w, x})=k(w—x). Let X be a decom-
posable linear space of measurable mappings from S into E such that for
each xe X [sk(x(s))do< +o (for instance X=L,, k(e)=(1/p)lel”).
Then we get a kernel K* on X setting

K3(w, x) = f k(w(s) — x(s)) ds for w,xelX.
Is

If we denote by /' the integral functional defined on X by

and by 7 the similar integral associated with the ¢-approximate integrand
f.(s, -) we have

(S3) () =13(x)
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for each x € X such that the e-approximate ( /%), of /¥ (with respect to K*)
1s finite at x, since

inf | [f(s, w(s))+& Yk(w(s)—x(s))] do

weXvs

- [ inf [ (s, 0)+ ¢ k(v — x(s))] do.

vsvekE

Therefore the knowledge of the regularization of the integrand yields the
regularized integral functional.

2.1. PROPOSITION. Let [~ X - R be such that dy(f)< +oc. Then for
each £€00,d(f)~'[ f. does not assume the value —x. If moreover f is
proper (ie., is finite somewhere) then f, is everywhere finite. Furthermore for
O<e<d<dy(f) ! one has

fasfes )

Proof. Given £€10,dy(f)"'[ and xe X we choose ce Jd.(f). ¢ '[
and be R such that /=5 — cK(-, x). Then we have f,(x)=b. If f takes a
finitc value at ze X then for each x € X we have

[ f(2)+e 'Kz, x)< +¢.

The last inequalities are obvious as K is nonnegative and f,{x) < f(x}+

¢ 'K(x,x)=f(x). 1

In the sequel K is said to be (locally) firm if for each xe X and cach
sequence (w,) in X with lim, K(w,, x) =0 one has (w,} — x; K is said to be
locally strictly firm if for each x € X and any sequences (w,), (x,) in X with
(x,) - x, (K(w,, x,)) =0 onc has (w,) —» x. When X is an open subset of
anvs. Eand K(w, x)=k(w—x) for k: E— R _, K is locally strictly firm iff
K is firm and this is the case if £ is firm in this sense that a sequence (¢,)
of E has limit O iff (k(e,)) — O; the converse is true when X' = E.

2.2. PROPOSITION.  Suppose K is a firm kernel. Let - X — R be such that
d(f) < +aoc. Then (f), .o converges pointwise as ¢ — 0, to the lower semi-
continuous hull f(x)=lm inf, _ , f(v).

Proof. We may supposc f is proper since the result is trivial when
f=+x.

For each ¢e P and each net (x,),., with limit x in X we have f,(x) <
f(x;)+& 'K(x;, x) hence f(x)<liminf,_,f(x,;). Therefore lim, ,,f.(x}=
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Sup,. o f.(x) < f(x). Let s < f(x): there exists a neighborhood ¥V of x such
that f(v) > s foreach v € V. As K is firm we can find ¢ > 0 such that K(w, x) >t
for each we X\ V. Let € 10,d(f) '[andlet e=(5" '+ 17" |s— f5(x)}) L
Then for ¢€ 10, £ and any we X\ V we have

Sw)+e "K(w, x) 2 fs(x)+ (67" =d7") K(w, x)
2 f5(x)+ ("' =8 Yizs,

hence f,(x) > s as K takes nonnegative values on Vx {x}. |

Obviously for each ¢eP, f, is upper semicontinuous (u.s.c.) as an
infimum of continuous functions; in particular when X is an open convex
subsct of a t.v.s. and when fand K arc convex we get that f, is continuous.
More general assumptions will be given later on guaranteeing the con-
tinuity of f..

Let us now supposc X is an open subset of a metric space (E, d). Then,
under some conditions on K, a lipschitzian property of the mappings
K(w, -), we X can be transferred to the approximates f; of /. The result we
present below is an easy variant of [21, Proposition 3.57. It uses the family
#(X) of bounded subsets of X which are strongly contained in X, where B
is said to be strongly contained in X if there exists re [ such that B, :=
{xe E:3yeB, d(x,y)<r} is contained in X.

2.3. PROPOSITION. Let K be a coherent kernel satisfying the following
conditions for some x,€ X, p, q,r in P:
(a) for each (w, x)e X* K(w, x,) < pK(w, x) + qK(x, xo) + r;
(b) if K(-, x,) is bounded on a subset B of X then Be #(X);
(c) for each Be #(X) there exists le R, such that

[K(w, x)— K(w, y)| <ld(x,y)  foreach (w,x,y)eB>

Then for any proper [ X >R =Ru {+x} with dg(f)< +o and any
£€]0,di(f) ‘[ witheqdy(f) <1, f, is lipschitzian on any member of B(X).

Using the quadratic kernel K= K, yields several important properties
(see, for instance, [15, Propositions 3.6 and 3.7] and [21]). Let us note in
particular the following two useful results.

2.4. LEMMA. Suppose X is a subset of a Hilbert space E and f: X - R is
quadratically minorized. Then, for A€ 00, d(f)"'[, f, — (1/24) | |? is concave
and u.s.c. on E.
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Proof. This follows from the fact that f;, ~ (1;24) | * is the infimum of
the family of continuous affine functions (g,), . » given by

1 1 ‘
gux)= == (x|v)+ 3 el + ffv). |

2.5. LeMMa. Suppose X is a convex subset of a Hilbert space E and
f1 X = R is quadratically minorized and such that {+(1/2/.) | |* is convex.
Then, for each pe 0, A[, f, + (122 —p)) | |? is convex on E.

Proof. Tt is well known that if g: X x E— R is convex then m: E—> R
given by m(x)=inf{g(w, x):we X} is convex. Thus, as

JxI? 4= = x1? = < w]?
U A

: Kl ;')(v )+;‘ :
= _ X—Ww - :
p(x—p) 1 A

the result follows from

Jux)+

|x|?

1
Wi—m

()l eoE ]

The proof shows that for K=K, di(f,)=(de(f) ' —p) ' for
e 10, dx(f) '[; this type of result can be extended to a general kernel K
satisfying a “metric-like” condition [21, Proposition 3.27].

Now we would like to give a short account of a nice recent work of
J.-M. Lasry and P.-L. Lions [15]. Rather than insisting on the uniform
continuity of the functions involved, we intend to put in full light the role
of a growth condition. Recall that given a mapping

FFXxY->R

on the product of two metric spaces (X,d,), (Y,d,) its lower
Moreau-Yosida approximate (with parameters 2, u) has been defined by
H. Attouch and R.J.-B. Wets [2] as

. 1 1 7
Fi(/ypu, x, y)=sup inf {F(u, v)+?d§,(u, x)——di(t, y)J.
/.

veY ue X 2/,(

Given /- X - R on a Hilbert space X, J.-M. Lasry and P.-L. Lions introduce
the (4, p)-approximate of f by

S3,x):=FY4 u,x,0),  where F(x,y)=f(x~y)
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so that, setting w=u—r, z=x — v one has

fﬁ‘”(x)=sup inf |:f(w)+2—1; vHw—x|t— L |v|2}

rteY wekX 2/1

1 1
=sup inf [f(w)%——,!w—zlz——|z—x|2}.
zeY wekX 2/' 21“

Therefore 13 ,= —{(—f;),.

2.6. THEOREM (compare with [157). Let X be a nonempty subset of a
Hilbert space E and let f: X = R be such that for some b, ¢ in R_ | f(x)| <
selx>+b for each xeX. Then for 7€]0,¢ '[, uel0,2[, fi, is a
mapping of class C' with lipschitzian derivative of lipschitzian rate
max(p !, (A—u)7").

Proof. Let b,ceR_ be such that |fi<ic|:|*+&. Then, for
2€10,¢7'[, —fi=—f= —3ic||?—b so that, using Lemma 2.4, we get
that £}, + (1/2p) |-]1>= —((— f:),.— (1/2u) | -|*) is convex on E. Therefore,
for each x € E, the directional subderivative of / , at x given by

1
L y)= diminf = (f} (x+1z)—f1 (x)) for yeE
" (2=, )1 ’ )

is a Ls.c. sublinear mapping in y. On the other hand, as —f, > — 3c|-|°—b
and — f; + (1/24) |-|* is convex on E by Lemma 2.4 we can conclude from
Lemma 2.5 that for pue]0,i[, fi,—(12(A—p)|-I*=—-[(—f).+
(1/2(2—u)) |-1?] is concave on E. Therefore /5, has a continuous linear
directional derivative at each point of E.

It remains to apply the following result to A= f} u

2.7. LEMMA. Let h: E— R be a continuous mapping such that for some
veP =10, +oc[, h+1iv|.|*and —h+ 3v|-|1? are convex. Then h is of class
C'! and its derivative is lipschitzian with rate v.

Proof. What precedes shows that 4 is directionally differentiable; thus it
suffices to show that VA has Lipschitz rate v (this will ensure Fréchet
differentiability). Now, by a classical result of Alexandroff, for each finite
dimensional subspacc F of E the restriction A, of 4 to F is twice differen-
tiable on the complement of a null set N of F. Moreover, by a well-known
property of symmetric bilinear functionals, for each ze FA\N

|Az(z)|| = max(sup hp(z)-v-v, sup —hp(z)-v-v)<v

lv] €1 vl <1
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It follows that /). has Lipschitz rate v. Therefore, for each v, x, ) in E|

taking any finite dimensional subspace F containing v, x, v we get
[h'(x)ye—h(y)e]|=thx)v—he (el <v o] ix— ¥

As v is arbitrary we get that 4’ has Lipschitz rate v. §

The fact that the preceding result applies to uniformly continuous
functions follows from the following simple observation.

2.8. LemMa. Let 2 X = R be a uniformly continuous function on a con-
vex subset X of a nv.s. E. Then there exists b, ce R, such thai |f{x)| <
cix|+ b

Proof. Let us definem: R, - R . by
m(r)=sup{| f(x)—f(y):(x, y)e X x—y <r},

so that lim,_,, m(r)=0. Subdividing any segment [x, 3] of X into &
segments we observe that for any ke N, m(kr)<km(r) and m(r +s) <
m{r)+ m(s) for any r, se R .. Thus m is finite valued and

mr)<[rIm(D)+ml)ysm(l)(r+ 1)
for [#J=max{keN:k<r}, so that, for any (x, x,)e X*

|f(] <1 fx)l +m(1)(jx — xg1 + 1)
sm(1) x| + [ f(xp)l + m(D){ixo[+1).

3. EXACTNESS AND DIFFERENTIABILITY

Let us call the c-approximate f, of f exact at x (resp. strictly exact at x)
if the infimum

foxy=inf [f(w)+e'K(w, x}]

we X

is attained (resp. attained at a unique point). This property is intimately
linked with differentiability properties of f, when X is an open subset of a
n.v.s. £ and K is differentiable.

Given a kernel K on an open subset X of a n.v.s. £ let us define the index
of K-nonconvexity of f: X - R at x as the infimum ¢, (f, x) (or ¢(/, x) if no
confusion can arisc) of the set of ceR, such that there exists rel
for which the mapping wr f(w)+ ¢K(w, x) 1s convex and proper
(i, £ +x¢) on B(x, r) for each xe B(x, r). Some properties of this index
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are described in [21] when K = K, (but there the properness condition was
not required).

In the sequel we suppose X is an open subset of a reflexive Banach space
E and K is locally convex in the following sensc: for cach X € X there exists
ae P such that B(X, 2)<= X and for each xe B(x, 2), K(-. x) is convex on
B(x,«). When in the preceding condition K(-, x) is strictly convex on
B(x, 1), K is said to be locally strictly convex.

Let us introduce some conditions on the kernel K. The first one is rather
mild; in particular it is a weakening of the metric-like condition of [21]:

(m) for each xe X there exist p, g, r, s in P =10, +oc[ such that
K(w, )< pK(w, x)+ gK(x, X} +r foreach (w, x)e X x B(X, s).

When K(w, x)=h(|lw—x|) where i:R_ >R, is a convex continuous
function with 4(0)=0 this condition is satisfied with p=g=3¢, r=d, s
arbitrary whenever 4 satisfics the following classical condition:

(A;) there exists ce P, de R, such that A(2¢) < ch(t) + d for each
teR,.
In particular this condition is satisfied for A(z) = (1/2) %, a = 1.
Our second condition is a strengthening of the firmness condition, so

that K will be said to be strongly firm if it satisfies it. It rcads as follows
(here B(x, 2) denotes the closed ball with center x and radius ):

(f) for each xe X, each ae P with B(X, a)< X, each ze B(x, «)
there exist f5, 7, 4 in P such that
K(w, x)=2p+7, B2 K(z, x)
forany we X\B(X, a). xe B(x, ).
When K(w, x) = k(w — x) for some k: E— R _ with £(0) =0 this condition
is satisfied whenever k enjoys the property:

(fo) for each p,oc in P, with p>e, inflk(u):lulzp}>
sup{k(v)<o}.

In particular (f) and (f,) arc satisfied when k(v)=h(|v|) where
h: R, - R, is continuous, strictly increasing with #(0) = 0. This is the case
for h(t)y=(1/x) t* with x> 1.

On the other hand, when the following variant (m’) of condition (m)
holds condition (/) can be simplified into

(f") for each x€ X, each xe P with B(xX, a) < X, each ze B(%, «)

inf{K(w, X):we X\B(%, 2)} > K(z, %),
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where condition (m') is

(m') forany xeX,reP,peRwithp>1thereexistgeR ., s5¢eP
such that for each (w, x)e X x B(X, s)

K(w, x)< pK(w, x)+ ¢gK(x, X)+ 7.

LeMMA.  When condition (m') holds true conditions (f) and (f') are
equivalent.

Proof. Tt suffices to show that (f) holds truc when (f') and (m') are
satisfied. Let O0eP be such that K(w,x)=K(z,x)+6 for each
we X\ B(%,%) and let y=r=160. Let us choose pe}1,2[ such that
p MKz X)+0)> K(z, X)+ 10 and let 6€ 10, s[ be such that gK(x, X)<r,
|K(z, X}— K(z, x){ <r for xe B(x, ). Then for we X'\ B(x, 1), xe€ B(x, 6)

B:=K(z, X)+r=K(z, x),
K(w,xy=p 'K(w, x)—p qK(x,x)—p 'r
2Kz, x)+3i0-2r=8+7 1
3.1. PrOPOSITION. Let K be a locally convex (resp. locally strictly con-
vex) kernel on X satisfying conditions (f) and (m) or conditions (') and
(m') above. Let f>X >R =RuU{+x} be Lsc. with di(f)< + arnd
cx(fy xY< 4+ for each x € X. Then there exists an open subset X of X xP

such that X U X x {0} is a neighborhood of X x {0} in Xx R, and such that
for each (x, ¢)€ X the ¢-approximate of [ is exact (resp. strictly exact) at x.

Proof. Let d>dy(f). For each e X we can find b = b(x) € R such that

f=zb—dK(-, X) and x=2(X)e P such that for some ¢c=c(X)e R, B(X, 1}
is contained in X and for each xe B(x, «), f+ ¢cK(-, x) and K(-, x)} are
convex on B(x, 2), f being proper on B(x, 2). Let ze B(X, «) be such that
f(z) is finite. Using condition (f) we can find 5, 7, § in P such that

(fy Kw,x)=p+7y B=K(z x)forany we X\ B(%, 2), xe B(%, J).

Let p, g, r. s be as in condition (m), the dependence on ¥ of these numbers
being omitted for the moment for the sake of simplicity:

{m) K(w, X)< pK(w, x)+ gK(x, X)+rforany we X, xe B(x, 5).
We may take € ]0, s[ so small that gK(x, x) <r for each xe B(x, §). Let
f=&X)=min(c™',d 'p~", y | f(2) + 2dr + dp(B+7) = b ).
Then for € 10, &[, we X\B(X, a), x€ B(x, 6) we have

(¢ '—dp)K(w,x)—¢ Kz, x)ze 'y —dp(B+7)
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so that
fw)+¢ 'K(w, x)=b—dK(w, %) + &~ 'K(w, x)
=>b+ (e ' —dp) K(w, x)— dgK(x, X} —dr
> f(z)+ &7 'K(z, x).

This shows that for each € ]0, £[ and each x € B(x, d)

F.(-,x):=f+e'K(-, x)

cannot attain its minimum on X but on B(X, ). As the closure B(xX, a) of
B(x, «) is weakly compact and as for x e B(X, «)

Fs('?x)ch‘i("x)+(8_l_C)K("x)

is convex and weakly lsc. on B(xX,a), this function does attain its
minimum on B(X, «), hence on X. When K is locally strictly convex this
minimizer is unique.

Let

X= ) B(%6(x)x 10, &=L,

XeX

where now the dependence of %, 3, £ on % is taken into account. Then X is
open, X U (X x {0}) is a neighborhood of X x {0} in Xx R, and for each
(x,c)e X we can find xe X with xe B(%, §(x)), € ]0, &(x)[ so that f, is
exact at x. |

When [ is supposed to be finite everywhere the proof of the preceding
result becomes simpler and its conclusion can be made more complete.
More generally, when the domain of f'is dense in X, in the preceding result
one can replace assumption (/) by the condition that K is (locally) strictly
firm.

3.2. THEOREM. Let f:X—> R be [lLsc. such that di(f)< +cc,
cx(f, X) < +0 for each x€ X, where K is a strictly firm and locally strictly
convex kernel on X satisfying condition (m). Then there exists an open subset
X of X xP containing the trace on X xP of a neighborhood of X x {0} in
X x R such that for each (x, &) € X there exists a unique J x € X verifying

folx)=f(J.x)+ &7 ' K(J,x, x).

Moreover for each xe X, (J x),. o converges to x as e >0, .
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Proof. Let us first observe that, by a well-known argument about Ls.c.
convex functions on Banach spaces, f is continuous on X.

Let xeX, let d>dy(f), and let beR, ceR,., xeF be such that
f=b—dK(-, x), f+cK(-,x) and K(-, x) arc convex on B(X, z)c X for
each xe B(x, 2). Let p, g, r, s be as in condition (m); we may suppose 2 < s.
Let ne€ 10, 2]. As K is locally strictly firm we can find 6e P and ée ]0, ]
such that K(w, x) 2o for any we X"\ B(X, ) and any x< B(x, ). We take
& so small that ¢K(x, ¥)<r, f(x)< f(x)+r for each xe B(xX. ). Let

g=x):=min(c™',d 'p Lo (X)+r+2dr+dpo—b] ')
Then for e€ 10, 2], we X B(X, ), xe B(x, §) we have
FOv)+e 'K(w, x)=b—dK(w. %) +¢& 'K(w, x)
2b+ (e ' —dp) K(w, x)— dgK(x, ¥)—dr
2b+ (e —dp)o—2dr
= f(X)+r>f(x)+6 "K(x, x).

Therefore the minimum of F,(-, x):=f+¢7'K{-,x) on X is attained on
B(x,n) and not clsewhere. As # <x the minimizer J,x is unique and as
ne 10, 2] is arbitrary we get that (J,x) - x as ¢ —» 0, . Finally we take .¥
as in the preceding proof with £(X) as above, (%) being the §¢ 10, ]
corresponding to =2 = x(X).

Let us now consider the question of continuity for J,; we give two results
in this direction.

Let us recall that a mapping J: D — E with Dc E is said to be mildly
continuous if it is continuous when D is endowed with the strong topology
and E is endowed with the weak topology. We shall require on K the
following equicontinuity condition on the members of the family Z(X) of
bounded subscts which are strongly contained in X:

(e} for each Be#A(X) the family {K(w.-):we B} is equicon-
tinuous on B.
In other terms, for each sequence (w,) in B and each sequence (x,) in B
with limit x one has lim, (K(w,, x,})~ K(w,, x))=0. This condition is
satisfied if the Lipschitz condition (c¢) of Proposition 2.3 holds true.

Ordinary continuity of J, will be obtained either under a strong con-
vexity assumption or under the following condition on X:

() if (w,) has weak limit w in X and (K(w,, x)) converges to
K(w, x) for some x e X then (w,) converges to w.

When K{w, x)=k(|w—x|) where k:R_ >R, is a continuous strictly

640-64 3.2
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increasing convex function satisfying £(0)=0, and when the norm of E
satisfies condition (H) below then condition (4) is satisfied:

(H) if (e,) has weak limit ¢ and if (|e,|) has limit |e| then
lim |e, —e| =0.

3.3. PrOPOSITION. (a) Suppose the assumptions of the preceding
theorem are in force and condition (e) holds true. Then for some choice of X
the mappings J, are mildly continuous from X,= {xe X:(x, ¢)e X} into E.

(b} If moreover condition (h) holds true then J, is continuous.

Proof. (a) Let us keep the notations of the preceding proof; for each
x e X we shrink a(x) if necessary so that B(x, x(x)) is strongly contained in
X. Let (x,) be a sequence with limit x in X,. Without loss of generality we
may suppose that x and the whole sequence (x,,) are contained in some ball
B(x, 6(x)). As J, x, € B(%, a(x)) for each n, a subsequence (J,x,),.» (With
N an infinite subset of N) has a weak limit we B(x, 2(x)). Then, setting
w,=J,.x, and using assumption (e} and the fact that F.(-, x) is weakly Ls.c.
on B(x, x(x)) as any continuous convex function we get

fU.x)+¢ K(J,.x, x)=lim (f(J.x)+¢ 'K(J,x, x,))

n

=limsup (f(J.x,)+¢ 'K(J.x,, x,})
=lim inf (f(w,) + &~ 'K(w,, x))
+ lim S_I(K(W", xn) —K(W", X))

= f(w)+e 'K(w, x),

so that, by uniquencss, w=J,x. As N can be chosen to be a subset of any
given infinite subset M of N, the whole sequence (J/,x,),.n converges
weakly to J, x.
(b) Let (x,) be as above and let ie Je, e(x)[ so that f+4i 'K(-, x)
is convex on B(x, 2(x)). Observing that the preceding inequalities yield
fU.x)+e ' K(J,x, x) =lm(f(w,) +¢ 'K(w,, x))
> lim inf(f(w,)+ 2" 'K(w,, X))

+(e~' =4 !ylim sup K(w,, x)

= f(J.x)+27'K(J . x, X)
+(e7 =2 HYK(J.x, x)
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we get lim sup K(w,, x)=lim inf K(w,, x) = K(J.x, x). Using condition (A}
we obtain that (J,x,), converges to J.x. ||

3.4. Remark. The hypothesis of Theorem 3.2 and condition (b) guaran-

tec that f, is continuous on X,.

3.5. PROPOSITION.  Suppose the assumptions of Theorem 3.2 are in force,
suppose f, is continuous and K satisfies the following strong convexiiy
assumption:

(¢} for each xe X there exists pelP and ceP such that for
(x, )y, 2)€ B(X, p)?

KG3y+3z,x)<3iK(y, x)+ 3Kz x)—¢ |y —z|~
Then J, is continuous on X, where X, = {xe X:(x,c)e X .

Proof. For each Xxe X we choose the associated x€ P of the proof of
Theorem 3.2 so that ax<p. Suppose J, is not continuous at some
x e B(x, «): there exists 6 € P and a sequence (x,) of B(x, x) with limit x

such that |J,x,—J, x| 2 ¢ for each neN. Then; ';vith the notations of the
proof of Theorem 3.2 we observe that for A, ceP withe< /<
F(,x)=F(,x)+( '—2 ")YK(-, x)
is strongly convex on B(X, x) for each x € B(X, 2). In particular
F3J.x,+3J.x, x,)<5F(J,x,, x,)
+1F(J.x, x,)~c |J.x,— J . x|%

Taking the limits as n » +oc we get, since K(J, x, -} is continuous,

fl(x) = hm/r(xn) g hm lnf Fl:(%‘]z:xn + %JIZ'\.‘ xn)
<lim sup L f.(x,) +limsup { F,(J,x, x,) — co?

<3UX) + 5F(J.x, x) = 6% = fi(x) —co?,
a contradiction. |

Some differentiability assumption must be made on K in order that f, be
differentiable. The following assumption (d) is in particular satisfied when
K(w, x) = k(w — x) with k strictly differentiable.

3.6. PROPOSITION. Suppose with the assumptions of Theorem 3.2 that J,
is continuous and that K satisfies the following differentiability assumption:
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(d) for each (w, x) in X x X there exists a continuous linear func-
tional D,K(w, x) on E such that

1
lim — (K(u, x+v)— K(u, x)— D, K(w, x)v)=0.
v—0v#£0 |U|

u—w

Then f, is Fréchet differentiable on X, with
Sfux)=e"'DyK(J,x, x).
Proof. For each (x, y)e X2 we have

SN SSUx)+e7 KU, x, y)
hence
L) = LX) <SS x)+¢ 'K(U.x, p)
—(f(J.x)+¢ 'K(J,x, x))
<e NK(J,x, y)— K(J,x, x))
<e 'D,K(J.x, x)(y —x)+ e 'R(J,x, x, y)
with R(w, x, y) = K(w, y) — K(w, x} — D, K(w, x)(y — x) so that

lim |y —x| ™' R(J,x, x, y)=0.

y—>x

Interchanging the role of x and y we get

fx) = fy)<e” (KU, y, x)— K(J. . »))

so that
fc(y)—fg(x)—s_lDzK(JEx,x)(y—x))a IR(Jeya X, ,V)

with lim, | . . |y —x| ™' R(J,y, x, y) =0 by our assumption on K and the
fact that J, is continuous at x. |

3.7. Remark. When the assumptions of Theorem 3.2 are satisfied, J, is
continuous, K(w, x)=k(w—x) wherc k: E—> R, is convex and Giteaux
differentiable, the preceding estimates show that f, is Gateaux differentiable
on X, and in fact is Hadamard differentiable on X, with

fix)=—¢ 'k'(J,x—x).

Let us now tackle the important question of the behavior of the family
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(f7)as ¢>0, . In order to do so we have to recall that the (lower) sub-
differential of f at x (where f(x) is finite) is given as in {19] by

f(x)={x€eE :VeeEf(x,v)<{x,v)},
where E’ is the topological dual of E and f'(x, -} is given by
fix,v)= liminf ¢ '(f{x+ ) — f{x))

(tu) »(0..1)

When f = g+ h with g convex and 4 of class C' this subdifferential coin-
cides with Clarke’s famous strict subdifferential [7].

3.8. THEOREM. Suppose the assumptions of Theorem 3.2 are in force.
with K(w, x)=k(w — x) where k: E - R, is a Gateaux differentiable convex
Sfunction, k(0)=20, and J, is continuous. Then for euach xe X

(a) any weak* cluster point of (f(x)), . as ¢ =0 . belongs to ¢f(x);

(b) if moreocer ¢f(x) is nonempty and if k(z)=h{|z|) for z € E where
h: R, = R. is convex, strictly increasing, differentiable with h'(0)=0 and
the norm of E is Gateaux-differentiable off 0 then (f.(x))..o converges
weakly 1o the element of ¢f(x) with least norm.

Proof. (a) Let (x,¢)eX so that xe B(X, d(%)) for some e X and
some d(x)e P as in the proof of Theorem 3.2. Taking 4€ Je, E[ as before
and observing that F,(-, x)= f+ 4 'K(-, x) is convex, we observe that J, x
1s characterized by

Oe(e "—A YD K(J.x, x)+(f+ A7 K(-, x))(J,x)
or
—& lDl K(JL‘X’ X) € (‘/\:/‘(Jri'x)'

Here this can be written
—e k', x—x)e&f(J, x).
Now fl(x)= —¢ 'k'(J,x — x). As the graph of
ws &f (w)=CF, (-, X)(w)— A7 k'(w—%)

is closed in the product topology of the strong topology on X and the
o(E’, E)-topology on E’ since this is the case for &F;(-, x) and &’ is con-
tinuous, we get that any cluster point x’ of (—¢ 'k'(J,x — x)),. , belongs
to ¢f(x).

(b) Now let us suppose k=ho N where N: E— R, is the norm of £
and AR, - R, is convex and differentiable. Let ie 10,Z[ and let
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e€]0,A[. As g:wr f(w)+ /4 'k(w— x) is convex on B(x, 2(x)) for each
x € B(x, 4(x)), using the monotonicity of ég on B(x, (X)) we can write, for
any x'e&f(x), with x,=J,. x, x'. = —¢ 'k'(x,— x),

(X' —xi+4 KO)—2 "k (x,—x), x—x,>=0
or, as k'(0)=0
{xyx—x>2(1—4i 'g)<x, x—x)

Let wus first suppose Xx.#x for ¢ small cnough so that
<NI(XE—‘X), X,;_X>=|x£_x|, |NI(XE—X)|=1.
Then

x=—e 'h(|x,—x|) N'(x,— x)
so that
(xt,x—x=¢ ' x,—x| K(|x,—x]) (1 =27 ") (X, x— x,).
It follows that

lim sup |x.| =lim sup ¢ “'A'(}x, — x}) < 'x'|.

e—=0.

Therefore (x.).., has weak™ cluster points as ¢ > 0,. As the norm is
weakly* ls.c. on E’, each of these cluster points X' satisfies |X'| <
liminf, ,,, |x'| for each x"edf(x).

As N is Gateaux differentiable on £\{0}, the dual norm is strictly con-
vex, hence the closed convex set ¢f(x) has at most onc point with smallest
norm. This uniqueness of cluster points ensures that (x.),., converges
weakly.

Now if x,=x for ¢ in a subset Q of P with 0 in its closure, we have
x,=—¢ 'k'(0)=0 for each ¢€ Q, hence 0€ éf(x,)=¢&f(x) while the limit
of (x.) as ¢ >0, ceR\Q is 0 by what precedes, so that (x.) >0 as ¢ >0
inP. |

3.9. Remark. When the assumptions of Theorem 3.8(b) are satisfied
and when the norm of E’ satisfies the condition

(A') if (x,) converges weakly to x’ and if (|x,|) converges to |x'|
then (x;,) converges strongly to x’

then the preceding proof shows that (f.(x)) converges strongly to the
element of least norm in &f(x).

Let us conclude this section by giving a positive partial answer to a ques-
tion raised by J.-M. Lasry and P.-L. Lions [15]. For simplicity we suppose
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E is a Hilbert spacc and K=K, is the usual quadratic kernel. Given
fi X—>R and xe X with ¢f(x)# ¢J, we denote by ¢, f(x) the element of
least norm in ¢f(x).

3.10. THEOREM. Let f:X >R be lsc., quadratically minorized
(dr(f)< +¢) and such that cx(f, x)< +oc for each xe X. Suppose [
satisfies the following Palais—Smale condition:

(Cy) each sequence (x,) such that ¢f(x,)# & and (8,f(x,}) =0
has a cluster point.

Then for each € P, f, satisfies the usual Palais-Smale condition on X :

(C) each sequence (x,) such that (f(x)),»c— 0 has a cluster
point.

Let us observe that for X =E, sup,.xcx(f, x)<c¢, we have X,=F for
t]0, ¢ '[.

Proof. We have seen that for x,e X,
Vi) =e~ (x, = J,x,),
where J, x,, is characterized by
e Mx,—J.x,)edf(J x,)

As (Vf(x,))uso—0 we get (80/(J.x,))ns0—0 and by our assumption
{(/:X,)n 50 has a converging subsequence (J.x;), . k- Since (|x —J, X i e &
converges to 0, (x;), . x has the same limit. ||

Some higher differentiability results will be found in [21]. Let us here
just note an observation showing that even in a simple case some extra
assumptions are needed.

It is easy to see that if fis a polyhedral convex function on some open
interval X of R then for each x e X there exists ¢ >0 and a neighborhood
U of x on which £, is of class C*. This is no more true in higher dimen-
sions, as shown by the following example.

3.11. ExaMpPLE. Let X =R’ f(z) =max(x, y, 0) for z=(x, y)e R% For
any ¢>0 let U, be the open ball with center (0, 0} and radius s(\/Z/Z).
Then for ze U,nR% we have J,.z=(0,0) as ¢ 'zedf(0)=co(0,e,,e,),
where ¢, =(1,0), e,=(0,1), so that f,(z)=(2¢)"'(x*+ ). For z=
(x,)eU,n(R, x(=P,)), we have J.z=(0,y) since ¢~ '(z—J,z)e
of(J.z)=co(0, e,), so that f,(z)= (2¢) ' x% Similarly, for z= (x, y)e U, N
((—R_)xP,) we get f.(z)=(2¢) !y Finally for z={(x, y) with x<0,
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¥»<0 we have J.z=z, f,(z)=0. Therefore f, is of class C"! on U,, with
Sfi(z)=(2¢ ”((X P+ (r ")),

Vi y)=e""(x",p "),
but there is no neighborhood of (0, 0) on which £, is of class C% |

The preceding example enhances the role of the transversality conditions
given in [21, Proposition 5.3 and its corollaries] in order that f, be of class
C? around a point. In particular, we observe that in the preceding example,
condition (b) of Corollaries 5.7 and 5.8 of [21] is not satisfied although
the other conditions are met with 4 = {(0, 0)}.

4. EPICONVERGENCE AND APPROXIMATION BY INFIMAL CONVOLUTION

It is well known that the Moreau- Yosida’s approximation scheme
enables one to reduce the epiconvergence of a family of functions to
ordinary pointwise convergence of the families of approximate functions
(see [1,13], for instance). Here we show that this fact remains true when
the approximation is given by a general firm kernel. Our proof is a simple
direct consequence of the definitions.

Let X be a topological space and let (f?),.» be a family of extended
real-valued functions on X indexed by a parameter p belonging to a subset
P of a topological space P°. Given a particular point @ of the closure cl P
of P in P* we denote by 2 the trace on P of the family 2° of neighborhoods
ofin P: 2={Q=0"nP:Q €2} Given h: P— R we write lim inf, h(p)
for sup, ., inf, ., A(p), omitting the inclusion pe P and the convergence
p - . Convergence with respect to a filter # in P can be set into this
familiar framework by adding a “point at infinity” & to P and putting on
=Py {®} a topology 7 inducing on P the discrete topology and such
that #' = {F'=Fu {®}:Fe #} is the family of neighborhoods of @ in P".
Let us recall that the epilimit inferior and the epi-limit supcrior of the
family (f?),cp are given by

elif?(x)= sup liminf inf f7(v)
14

Ve ¥{x) P veV

elsf?(x)= sup limsup inf /?(v),
P

Ve . 47(x) p veV
where A47(x) is the filter of neighborhoods of x in X. Setting

J(x)= inf f7(x)
reg
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for a subset Q of P and xe X we observe that

elif?(x)= liminf f7(z)=sup f9(x).
r (p,u;):l()r:'),x) Qe

where ¢ is the lower-semicontinuous hull of g: X — R given by

g(x)=liminf g(x)= sup inf g(v).

v X Voot(x) relV
The following result relates the preceding epi-limits of the family (/7) to
ordinary pointwise limits of the approximate functions { 7).
4.1. THEOREM. For any parametrized family (f7),. » of extended real-
valued functions on X one has for each xe X

(2) elif”(x)>suphiminff?(x),

>0 P
(b) elsf?(x)>=sup limsup f?(x).
P &> 0 p

If (f7),cp is a K-equiminorized family and if the kernel K is firm equality
holds in (a) and (b).

Here the family (f7),. p is said to be K-equiminorized if for cach xe X
there exists b and ¢ in R_ such that

fr(wy=z b —cK(w, x) foreach we X,cachpeP.

In fact we could assume that this inequality holds true for cach we X and
each p belonging to some member Q of 2.

Proof. (a) As g=sup,.,g. for any ge R*, in particular for g= f¥,
Q.2 we have
e li/"(x)= sup f%x)>sup supf2(x)
P Qe Qe ¢>0

=sup sup inf (inf /7(w)+¢ 'K(w, x))

>0 Qcd weX peQ

=sup sup inf inf (f7(w)+¢ 'K(w, x))

£>0 Qe peQ welX

=sup lim inf/?(x).
=0 P

When (f”),. » is K-equiminorized, for cach xe X" we can find b and ¢ such
that

fP(w)=b— cK(w, x) foreach (w.p)eXxP
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so that for each Q € 2 (or each Q € 2 contained in some Qy€ 2)
few)=b—cK(w, x) foreach welX.
Then, if K is firm, Proposition 2.2 asserts that

f2(x)=supf2(x)

£>0

so that equality holds everywhere above.

(b) In order to prove the announced inequality it suffices to show
that for any £¢>0 and any re R such that r>e¢ls, f”(x) one has

r>lim sup f?(x)
4

since we may suppose els,f”(x)<+oc. Let >0 be such that
r—a>els,f7(x) and let Ue A"(x) be such that K(u, x)<ea for each
ue U. Then

lim sup f2(x) <lim sup inf (f?(u)+¢ 'K(u, x))
P P uell

Llimsup inf f7(u) +a
¥4 ue U

£ sup limsup inf f7(v)+«
Ve .N(x) p ve vV

=elsfr(x)+a<r
p

Now let us prove the opposite inequality when K is firm and (f7) is
K-equiminorized. We may suppose e1s f?(x)# —oc. Let re R be such that
r<els, f?(x). By definition of the epi-limit superior we can find Ue .#"(x)
such that

r<lim sup inf f?(u).
P ue U

Let b and ¢ in R, be such that f?>b— cK(-, x) for each pe P. As K is firm
we can find ¢,€70,¢c '[ such that (¢7'—c¢)K(w, x)=r—b for each
we X\U, ¢€]0,¢,[. As

r< inf sup inf f7(u)
Qe?2 peQ uelU

for each Q € 2 we can find g€ Q such that

r< inf'f"(u).

uel
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As for we X7\U, ¢€ 10, ¢,.[ we have

fUw)+e 'Kw, x)=2b—cK(w, x)+& ‘Kiw, x)=r

f4x)zmin(r, inf f9u)+e 'K{u, x))=r.

Pr=R &
Therefore, for ¢e 0, ¢,/ [

limsup f2(x)=r. |
P

Let f°e R* and let (f7),.p,< R*; we define a family (/) of extended
real-valued functions on X parametrized by Pu {&} by setting f© = f° and
following [257 declare that this extended family is epi-/s.c. (resp. epi-u.s.c.)
at (@ and) x if eli, f7(x) = f°(x) (resp. els, f7(x) < f°(x)).

Then the main assertion of Theorem 4.1 can be rephrased as follows.

4.2. CorOLLARY. Suppose K is firm and that the family (f?),.p is
K-equiminorized. For any f°eR* the extended family (f9),.p..
epi-Ls.c. (resp. epi-us.c.) at x iff

is

{m}

sup lim inf £ 7(x) > f°(x)
>0 /4

(resp' Supl; >0 hm Supp,fg(x) S/O(X))
In particular ({7),. p epi-converges at x iff

sup lim inf /' ?(x) = sup lim sup f 7(x).
e>0 P e>0 P

Therefore the family (f7),. p epi-converges at x whenever for each ¢ >0,
(f#(x)),. » converges.
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